

motion-pipeline (ABANDONED)

[image: pypi version]
 [https://pypi.python.org/pypi/python-package-skeleton][image: Project Status: Abandoned – Initial development has started, but there has not yet been a stable, usable release; the project has been abandoned and the author(s) do not intend on continuing development.]
 [http://www.repostatus.org/#abandoned]Frontend and recording management pipeline for the Motion video motion detection project.

Docs: https://motion-pipeline.readthedocs.io/en/latest/

Status

This project is abandoned. I got it working in a very basic sense - it’s able to handle events from motion (motion detection and new movies), display the movies in the very simplistic web UI, extract the first frame, and send a summary notification (with the first frame image) via Pushover. It also has support for archiving/deleting events and some basic classification of them.

Unfortunately I moved last week, and the motion detection logic in motion can’t handle all of the moving shadows from trees on my property. ZoneMinder, which takes color information into account, can handle it much better. So I’ve abandoned this in favor of ZoneMinder. I’m leaving the code here in case it’s of use to anyone.

Introduction

I have two IP cameras at home that I’d like to use for security, specifically motion-activated recording and notification of events when I’m away. The cameras (see my detailed unboxing/review of them on my blog [https://blog.jasonantman.com/2018/05/amcrest-ip-camera-first-impressions/]) are 960P and 1080P, respectively. The current options [https://blog.jasonantman.com/2018/05/linux-surveillance-camera-software-evaluation/] for Free/Open Source software to do this aren’t adequate for me; ZoneMinder, the de-facto standard, doesn’t meet my resource constraints of being able to run on (or partially run on) a RaspberryPi 3 B+ and the other options I could find aren’t mature or lack features I need.

As a result, I’m building this. It’s a project composed of multiple services and intended to handle processing data from Motion (recordings and the metadata associated with them), storing it, and providing a viewing interface and notifications/alerts. The project is intended to be modular, utilizing a storage service (S3 or the local S3-compatible minio [https://www.minio.io/]), a queue (Redis) and a database (MySQL) to connect a handler that runs on the same device as motion (this could be anything from a RaspberryPi to a server), an asynchronous task worker for ingesting new data from motion, triggering notifications, and generating thumbnails, and a web frontend.

Documentation

Full documentation for this project is hosted on ReadTheDocs at https://motion-pipeline.readthedocs.io/en/latest/.

Bugs and Feature Requests

Bug reports and feature requests are happily accepted via the GitHub Issue Tracker [https://github.com/jantman/python-package-skeleton/issues]. Pull requests are
welcome. Issues that don’t have an accompanying pull request will be worked on
as my time and priority allows.

Contents

	Overview
	Architecture
	Motion Ingest

	User Interface and Notifications

	Installation
	Requirements

	Installation of Dependencies

	Installation of motion_handler.py

	Configuration
	motion-pipeline settings file or module

	Configuration of Motion Itself
	Example motion.conf

	Running
	motion_handler.py

	Celery Task Workers

	Web Frontend

	Development
	Guidelines

	Testing

	Alembic Database Migrations

	Release Checklist

	API

	Changelog
	x.y.z (YYYY-MM-DD)

Indices and tables

	Index

	Module Index

	Search Page

Overview

I have two IP cameras at home that I’d like to use for security, specifically motion-activated recording and notification of events when I’m away. The cameras (see my detailed unboxing/review of them on my blog [https://blog.jasonantman.com/2018/05/amcrest-ip-camera-first-impressions/]) are 960P and 1080P, respectively. The current options [https://blog.jasonantman.com/2018/05/linux-surveillance-camera-software-evaluation/] for Free/Open Source software to do this aren’t adequate for me; ZoneMinder, the de-facto standard, doesn’t meet my resource constraints of being able to run on (or partially run on) a RaspberryPi 3 B+ and the other options I could find aren’t mature or lack features I need.

As a result, I’m building this. It’s a project composed of multiple services and intended to handle processing data from Motion (recordings and the metadata associated with them), storing it, and providing a viewing interface and notifications/alerts. The project is intended to be modular, utilizing a storage service (S3 or the local S3-compatible minio [https://www.minio.io/]), a queue (Redis) and a database (MySQL) to connect a handler that runs on the same device as motion (this could be anything from a RaspberryPi to a server), an asynchronous task worker for ingesting new data from motion, triggering notifications, and generating thumbnails, and a web frontend.

The architecture is intended to be decoupled, equally happy on a single fanless computer or in the cloud, and to allow separating realtime tasks (motion for motion detection and recording, and ingesting its recordings and metadata into the system) from less-time-sensitive tasks (generating thumbnails for videos, etc.) and the user interface.

Architecture

The main architecture includes three pieces: motion_handler.py that is triggered by motion, the asynchronous task workers, and the web frontend. It relies on Redis, MySQL, and Amazon S3 or a local S3-compatible storage service (minio [https://www.minio.io/]) as dependencies.

Motion Ingest

 +---+ +-----------------+
 |cam+----->RaspberryPi, etc.| ... N instances of
 +---+ |motion_handler.py| cam -> motion_handler
 +---+------------++
 | |
 | |
+------------------v----+ +v-----------------+
|redis "motion-incoming"| |S3 or minio bucket|
|queue | +-+-------^--------+
+-------------+---------+ | |
 | | |
 | | |
 +-----------v------+ +------v-------+-----+
 |data ingest worker+---->Video Thumbnail |
 +------------------+ |Worker |
 | +-----+----------+---+
 | | |
 | | +----v------------+
 +v----------v--+ |user notification|
 |MySQL Database| |worker |
 +--------------+ +-----------------+

(generated by asciiflow Infinity - http://asciiflow.com/)

User Interface and Notifications

TBD.

Installation

motion-pipeline is made up of three overall components that can be installed separately: motion_handler.py (the script used by motion itself in the on_* settings), the task worker, and the web frontend.

Requirements

	Python 3.4+ (currently tested with 3.4, 3.5, 3.6) and pip

	Python VirtualEnv [http://www.virtualenv.org/] (recommended installation method; your OS/distribution should have packages for these)

	motion [https://motion-project.github.io/] on the system that will run the motion-handler

	Redis and MySQL on some system (can be colocated with any of these components, or completely separate system(s))

For installations other than on RaspberryPi or similar dedicated systems, it’s recommended that you install into a virtual environment (virtualenv / venv). See the virtualenv usage documentation [http://www.virtualenv.org/en/latest/] for information on how to create a venv.

To install the requirements for motion-handler on a RaspberryPi running Raspbian Stretch (2018-04-18-raspbian-stretch-lite image) I did the following:

	wget https://github.com/Motion-Project/motion/releases/download/release-4.1.1/pi_stretch_motion_4.1.1-1_armhf.deb && sudo apt install ./pi_stretch_motion_4.1.1-1_armhf.deb - this installs the motion [4.1.1 package from GitHub](https://github.com/Motion-Project/motion/releases/tag/release-4.1.1), which includes some important fixes over the 4.0-1 package in the Raspbian Stretch repositories.

	sudo apt-get install python3-pip git python3-dev

If you don’t have them installed already, you may need to install the common build tools on your OS.

Installation of Dependencies

	To install motion-pipeline and only the dependencies for motion_handler.py: pip install motion-pipeline

	To install motion-pipeline and the dependencies for the task worker: pip install motion-pipeline[worker]

	To install motion-pipeline and the dependencies for the web frontend: pip install motion-pipeline[web]

	To install all of the above: pip install motion-pipeline[all]

Installation of motion_handler.py

I haven’t had time to write real installation tooling for this yet. In the mean time, on the computer where you’ll be running motion:

	pip install motion-pipeline

	Find and record the absolute path to the motion-handler entrypoint: which motion-handler

	Copy your motion-pipeline settings file or module somewhere on that machine (as an example, we put it at /etc/motion-pipeline_settings.py).

	Set up your motion.conf file for motion. Specify the various on_* configuration settings to point to the path to the motion-handler entrypoint and set the --config option to the path to your settings file/module. See Example motion.conf for an example.

Configuration

motion-pipeline settings file or module

motion-pipeline is configured via a Python settings file. This file is imported by settings.py and can be specified as either a dot-delimited importable python module or the absolute path to a Python source file on disk (if using a source file, it must be specified as an absolute path). The configuration file can be set either via the MOTION_SETTINGS_PATH environment variable or via the -c / --config options to most of the entrypoint scripts.

Note that this file is imported whenever motion sends an event to motion-handler. While it can include any Python code, it should be as simple and fast-loading as possible.

An example file is in the motion-pipeline source as settings_example.py; you should copy that file as an example and edit as necessary.

Configuration of Motion Itself

Configuration of motion itself involves setting the correct event handler commands to point to motion_handler.py and pass the required arguments. See the example below.

Example motion.conf

The only parts of motion.conf that are specific to motion-pipeline are the various on_* options that tell motion to execute our handler when various events occur:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	
Number of steps to make (stepper motor option) (default: 40)
track_stepsize 40

##
External Commands, Warnings and Logging:
You can use conversion specifiers for the on_xxxx commands
%Y = year, %m = month, %d = date,
%H = hour, %M = minute, %S = second,
%v = event, %q = frame number, %t = camera id number,
%D = changed pixels, %N = noise level,
%i and %J = width and height of motion area,
%K and %L = X and Y coordinates of motion center
%C = value defined by text_event
%f = filename with full path
%n = number indicating filetype
Both %f and %n are only defined for on_picture_save,
on_movie_start and on_movie_end
Quotation marks round string are allowed.
##

Do not sound beeps when detecting motion (default: on)
Note: Motion never beeps when running in daemon mode.
quiet on

Command to be executed when an event starts. (default: none)
An event starts at first motion detected after a period of no motion defined by event_gap
on_event_start /usr/local/share/motion-pipeline/motion_pipeline/motion_handler.py --config=/etc/motion/mysettings.py --action=event_start --date="%Y-%m-%d %H:%M:%S" --event_id=%v --frame_num=%q --cam=%t --changed_px=%D --noise=%N --text_event="%C" --motion_width=%i --motion_height=%J --motion_center_x=%K --motion_center_y=%L --cam-name="%$" --threshold=%o --labels=%Q --fps=%{fps} --host=%{host}

Command to be executed when an event ends after a period of no motion
(default: none). The period of no motion is defined by option event_gap.
on_event_end /usr/local/share/motion-pipeline/motion_pipeline/motion_handler.py --config=/etc/motion/mysettings.py --action=event_end --date="%Y-%m-%d %H:%M:%S" --event_id=%v --frame_num=%q --cam=%t --changed_px=%D --noise=%N --text_event="%C" --motion_width=%i --motion_height=%J --motion_center_x=%K --motion_center_y=%L --cam-name="%$" --threshold=%o --labels=%Q --fps=%{fps} --host=%{host}

Command to be executed when a picture (.ppm|.jpg) is saved (default: none)
To give the filename as an argument to a command append it with %f
on_picture_save /usr/local/share/motion-pipeline/motion_pipeline/motion_handler.py --config=/etc/motion/mysettings.py --action=picture_save --date="%Y-%m-%d %H:%M:%S" --event_id=%v --cam=%t --text_event="%C" --filename="%f" --filetype=%n --cam-name="%$" --threshold=%o --labels=%Q --fps=%{fps} --host=%{host}

Command to be executed when a motion frame is detected (default: none)
; on_motion_detected value

Command to be executed when motion in a predefined area is detected
Check option 'area_detect'. (default: none)
; on_area_detected value

Command to be executed when a movie file (.mpg|.avi) is created. (default: none)
To give the filename as an argument to a command append it with %f
; on_movie_start value

Command to be executed when a movie file (.mpg|.avi) is closed. (default: none)
To give the filename as an argument to a command append it with %f
on_movie_end /usr/local/share/motion-pipeline/motion_pipeline/motion_handler.py --config=/etc/motion/mysettings.py --action=movie_end --date="%Y-%m-%d %H:%M:%S" --event_id=%v --cam=%t --text_event="%C" --filename="%f" --filetype=%n --cam-name="%$" --threshold=%o --labels=%Q --fps=%{fps} --host=%{host}

Command to be executed when a camera can't be opened or if it is lost
NOTE: There is situations when motion don't detect a lost camera!
It depends on the driver, some drivers dosn't detect a lost camera at all
Some hangs the motion thread. Some even hangs the PC! (default: none)
on_camera_lost /usr/local/share/motion-pipeline/motion_pipeline/motion_handler.py --config=/etc/motion/mysettings.py --action=cam_lost --date="%Y-%m-%d %H:%M:%S" --cam=%t --cam-name="%$" --host=%{host}

Running

Here’s how to run it.

motion_handler.py

motion_handler.py is run automatically by motion when relevant events are fired. All that needs to be done is install it, configure it and motion itself, and then run motion however is appropriate for your OS.

Celery Task Workers

	If you installed in a virtualenv, source it. Ensure you’ve run python setup.py develop or pip install motion-pipeline[worker]

	Ensure Redis is running and the REDIS_BROKER_URL setting is correct.

	Ensure the path to your settings file is exported as MOTION_SETTINGS_PATH

	celery -A motion_pipeline.celerytasks.tasks worker --loglevel=info -Ofair -c 3

Web Frontend

	If you installed in a virtualenv, source it. Ensure you’ve run python setup.py develop or pip install motion-pipeline[web]

2. Ensure the path to your settings file is exported as MOTION_SETTINGS_PATH
4. FLASK_APP=motion_pipeline.web.app flask run

Development

To install for development:

	Fork the python-package-skeleton [https://github.com/jantman/python-package-skeleton] repository on GitHub

	Create a new branch off of master in your fork.

$ virtualenv python-package-skeleton
$ cd python-package-skeleton && source bin/activate
$ pip install -e git+git@github.com:YOURNAME/python-package-skeleton.git@BRANCHNAME#egg=python-package-skeleton
$ cd src/python-package-skeleton

The git clone you’re now in will probably be checked out to a specific commit,
so you may want to git checkout BRANCHNAME.

Guidelines

	pep8 compliant with some exceptions (see pytest.ini)

	100% test coverage with pytest (with valid tests)

Testing

Testing is done via pytest [http://pytest.org/latest/], driven by tox [http://tox.testrun.org/].

	testing is as simple as:

	pip install tox

	tox

	If you want to pass additional arguments to pytest, add them to the tox command line after “–”. i.e., for verbose pytext output on py27 tests: tox -e py27 -- -v

Alembic Database Migrations

This project uses Alembic [http://alembic.zzzcomputing.com/en/latest/index.html]
for DB migrations:

	To generate migrations, run alembic -c motion_pipeline/alembic/alembic.ini revision --autogenerate -m "message" and examine/edit then commit the resulting file(s). This must be run before the model changes are applied to the DB. If adding new models, make sure to import the model class in models/__init__.py.

	To apply migrations, run alembic -c motion_pipeline/alembic/alembic.ini upgrade head.

	To see the current DB version, run alembic -c motion_pipeline/alembic/alembic.ini current.

	To see migration history, run alembic -c motion_pipeline/alembic/alembic.ini history.

Release Checklist

	Open an issue for the release; cut a branch off master for that issue.

	Confirm that there are CHANGES.rst entries for all major changes.

	Ensure that Travis tests passing in all environments.

	Ensure that test coverage is no less than the last release (ideally, 100%).

	Increment the version number in python-package-skeleton/version.py and add version and release date to CHANGES.rst, then push to GitHub.

	Confirm that README.rst renders correctly on GitHub.

	Upload package to testpypi:

	Make sure your ~/.pypirc file is correct (a repo called test for https://testpypi.python.org/pypi)

	rm -Rf dist

	python setup.py register -r https://testpypi.python.org/pypi

	python setup.py sdist bdist_wheel

	twine upload -r test dist/*

	Check that the README renders at https://testpypi.python.org/pypi/python-package-skeleton

	Create a pull request for the release to be merged into master. Upon successful Travis build, merge it.

	Tag the release in Git, push tag to GitHub:

	tag the release. for now the message is quite simple: git tag -s -a X.Y.Z -m 'X.Y.Z released YYYY-MM-DD'

	push the tag to GitHub: git push origin X.Y.Z

	Upload package to live pypi:

	twine upload dist/*

	make sure any GH issues fixed in the release were closed.

motion-pipeline

Changelog

x.y.z (YYYY-MM-DD)

	something

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/landing_view.png
Motion Pipeline v 0.1.0

New Events | Status: Motion Detection:

Menu

CAM1

CAML1 LIVE STREAM

101ps

Last Event:
Detection:

Titup

CAM2

CAM2 LIVE STREAM

101ps

Last Event:
Detection:

nav.xhtml

 Table of Contents

 		
 motion-pipeline (ABANDONED)

 		
 Overview

 		
 Architecture

 		
 Motion Ingest

 		
 User Interface and Notifications

 		
 Installation

 		
 Requirements

 		
 Installation of Dependencies

 		
 Installation of motion_handler.py

 		
 Configuration

 		
 motion-pipeline settings file or module

 		
 Configuration of Motion Itself

 		
 Example motion.conf

 		
 Running

 		
 motion_handler.py

 		
 Celery Task Workers

 		
 Web Frontend

 		
 Development

 		
 Guidelines

 		
 Testing

 		
 Alembic Database Migrations

 		
 Release Checklist

 		
 API

 		
 Changelog

 		
 x.y.z (YYYY-MM-DD)

_static/plus.png

_static/main_view.png
Motion Pipeline v 0.1.0 | New Events | Status: | Motion Detection:

Recent Events

CAM1 -

CAM2 -
3,492 pixels; noise level 12

VIDEO PLAYER

Video Controls

Camera | CAML (1) | Host | rpi5 | Event Time | XXXX-XX-XX XX-XXXX
Frames | 123 | Pixels Changed | 12,345 | Event ID | XXXX
more | info | about | the | event | here.

[Nextevent | | pemaink | [MarkUnseen | wonve | [el

_static/minus.png

_static/up-pressed.png

_static/up.png

